
Managed by Fermi Research Alliance, LLC for the
U.S. Department of Energy Office of Science
www.fnal.gov

Fermi National Accelerator Laboratory

Developing a User Interface for
DUNE HEPCloud

Elisabeth Petit – Bois
Georgia Institute of Technology – GEM Fellow

Supervisors:
Kenneth Herner
Michael Kirby
Andrew Norman
Fermi National Accelerator Laboratory

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 2

Table of Contents

1. Acknowledgements 3
2. Background 4

2.1. Computing at Fermilab 4
2.2. Job Submission Services 4
2.3. HEPCloud 4

2.3.1. HTCondor 4
2.3.2. HEPCloud Decision Engine 4

2.4. Challenges 5
3. Objective 6
4. Project Specification 6

4.1. Stakeholders 6
4.2. Application Requirements 6

5. Development 8
5.1. Identity 8
5.2. Frontend 8
5.3. Backend 11

5.3.1. Server Configuation 11
5.3.2. API Configuration 11
5.3.3. Application Data 13

6. Technologies 16
7. Development Challenges 17
8. Future Direction 17
9. References 19

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 3

1. Acknowledgements

First and foremost, I would like to thank all three of my supervisors – Kenneth Herner, Michael
Kirby, and Andrew Norman – for being great advisors and mentors. They were graciously
tolerable of me during my stay by answering questions, scheduling meetings, debugging code,
and whatever else despite their busy schedules.

A huge thank you to the Scientific Computing Department (SCD) and, most particularly, the
HEPCloud team for all the guidance throughout this summer. Additionally, none of this work
would be possible without the work of the SIST committee successfully conducting the first
remote intern program this year.

Finally, I would like to extend my gratitude to The National GEM Consortium for their role in
making opportunities like these possible for myself and many other minorities in STEM looking
to conduct research and pursue graduate education.

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 4

2. Background

The Deep Underground Neutrino Experiment (DUNE) is an international experiment
headquartered at Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The
collaboration grew in an attempt to support ongoing efforts for studying neutrino physics.

DUNE, although still under construction, is an extremely ambitious neutrino physics plan. The
completed project will be housed in the United States; however, there is a prototype at CERN
known as ProtoDUNE. The final result is expected to consist of two particle detectors and a
proton accelerator, powering the most intense neutrino beam in the world. The neutrino beam
will travel through the Earth from Fermilab to the Sanford Underground Research Facility in
South Dakota, spanning an impressive distance of around 1,300 kilometers total [1].

2.1 Computing at Fermilab
Because the nature of DUNE’s work is complex, the algorithms built to analyze interesting
detector events are naturally also incredibly intricate. In fact, scientific computation requirements
from experiments like DUNE regularly exceed require hundreds of millions of CPU hours to
complete. Therefore, there is an ongoing need for high performance computing (HPC) and
dynamic resource provisioning. These technologies maximize efficiency, increasing throughput
and resource utilization. They also allow for researchers to worry less about coding for optimal
algorithmic complexity and focus more on the objective at hand.

2.2 Job Submission Services
In order to get computing jobs to a HPC cluster, scientists must first submit them through either
the Production Operations Management System (POMS) or JobSub [2, 3]. POMS is a graphical
user interface that operates as a JobSub wrapper. For those who prefer command line
interfaces, JobSub is readily available to perform the same operations as POMS. In these
systems, users identify job parameters, or “classads,” that inform backend systems on how to
handle an incoming computation request.

2.3 HEPCloud
HEPCloud is Fermilab’s main gateway to a wide range of computing resources. For researchers
who require HPC, this service is tied to the Worldwide LHC Computing Grid (WLCG), allowing
for access to varied resources like institutional clusters, supercomputers, and commercial
clouds located all around the globe [4, 5, 6].

2.3.1 HTCondor
HTCondor is a batch processing system used to onboard computation jobs to HPC clusters.
The system makes use of classads to describe resources necessary to accomplish the
computing task of a job. As mentioned in Section 2.2, this metadata is defined via POMS or
JobSub and later used by the HEPCloud Decision Engine to pair jobs to an available
computing cluster.

2.3.2 HEPCloud Decision Engine
The HEPCloud Decision Engine is a service that performs cluster backend matching for
DUNE jobs submitted through POMS or JobSub [7]. The Decision Engine analyzes

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 5

parameters assigned to each job to identify the most appropriate HPC cluster capable of
performing the computation task.

To achieve its goal, the backend of the Engine hosts a set of Logic Rules that define how
jobs should be interpreted at the time of submission. It also manages several channels that
contain information regarding the status of HPC clusters. This channel data, in combination
with job parameter data, informs the Logic Rules about where a particular job should run [8,
9].

2.4 Challenges

Figure 1: DUNE Workflow Overview

Although the job submission workflow is a solid process, there is more to be desired from the
system. Firstly, the HEPCloud Decision Engine presently operates as a black-box for users.
After a job is submitted through POMS or JobSub, users cannot modify parameter
configurations or cluster preferences. In fact, most scientists are not aware where their jobs run,
if they run at all. Furthermore, the state of the Decision Engine is not accessible for users to see
or alter.

These challenges pose potential risks for experiment efficiency. For example, in the case of
financial resources, ideally, the Decision Engine should direct jobs to the cheapest commercial
cluster at the time of submission. However, because the decision-making process is obfuscated,
it is unclear that the correct choice is being made every time. The same case can be made for
computational resources. The Decision Engine may miss opportunities where it could run a job
at a less active cluster versus one that is inundated with computation jobs in its queue.

The overall lack of end-user confidence and awareness of what is happening in the system
backend has the potential to be detrimental to the bottom line and the quest for new physics.

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 6

3. Objective

The objective of this project is to build a web application that allows DUNE users to:
• Read and Write the global state of the HEPCloud Decision Engine.
• Read and write job-specific parameters.
• Read Decision Engine data regarding cluster backend matching.

In order to:

• Create system transparency by opening the Decision Engine’s black-box.
• Provide users with more control over their job submissions.

4. Project Specification

Understanding the key participants as well as their needs is crucial to address the challenges
faced by the DUNE team and Fermilab at large. This section describes the main stakeholders
and defines key project requirements gathered prior to project development.

4.1 Stakeholders

Seeing as this project directly addresses concerns raised by participants within DUNE, the
major collaborators originate from this experiment. The DUNE team represents a small group of
users who will be able to test and use the application prototype and final product. They
understand the overall vision for the project and regularly perform the DUNE workflow in Figure
1. Within this group, there are three main contacts who are also project supervisors:

• Kenneth Herner — DUNE Scientist who also provides experiment software support.
• Michael Kirby — DUNE Scientist who also coordinates computing services at Fermilab.
• Andrew Norman —DUNE Scientist who also serves as the HEPCloud project lead.

Next, the HEPCloud team is responsible for high performance scientific computing capabilities
across Fermilab. A subset of the HEPCloud unit hosts the Decision Engine team which
manages and develops the software responsible for how backend matching occurs after job
submission. Andrew Norman serves as the main point-of-contact for HEPCloud.

4.2 Application Requirements

The application requirements call for three main pages:

1. a global page depicting the state of the HEPCloud Decision Engine.
2. a job parameters page showcasing information concerning a particular job.
3. an all jobs page listing jobs that a user has previously submitted to the job submission

services described in Section 2.2.

Table 1 below further elaborates on the main requirements gathered during the elicitation
meeting.

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 7

Table 1 – Application Requirements

Requirement

1. The user should be able to view the parameters currently placed in the Decision Engine.

2. The user should be able to view the parameters relating to a particular Job ID.

3. The user should be able to modify global parameters within the Decision Engine.

4. The user should be able to modify job-specific parameters.

5. The user should be able to add job-specific parameters.

6. The user should be able to remove job-specific parameters.

7. The user should be able to view decisions regarding HPC cluster-matching for a particular
job.

8. The user should be able to view all submitted jobs where they are the job owner.

9. The user should be able to filter jobs by their parameters.

10. The user should be able to access the job parameters page by clicking on a job listed on the
all jobs page.

11. The user should be able to access the application via Fermilab’s Single Sign-On (SSO)
Identity Provider.

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 8

5. Development

During the first three weeks of the internship, the main focus was establishing a baseline for
user needs and creating a visual identity for the application.

For the remainder of the ten weeks, tasks were mostly code-driven, and my supervisors and I
largely followed a sprint-like approach to arrive at the final result. Sprint meetings, although
unstructured, were a critical time during the week to relay progress, ask questions, provide
feedback, and define the next week’s objectives.

This section details components of the development process including establishing the
application design and identity, creating the frontend, and configuring the backend.

5.1 Identity
The very first task was to assign a name and create a graphic representation for the application.
The submitted brand is shown in Figure 2.

Because the application is mainly concerned with creating
transparency regarding which computing clusters jobs are
directed to after submission, the graphic tries to depict a
“decision tree” itself. The name and brand is suitable
because:

• Much like how the Decision Engine operates, decision
 trees use available factors to arrive at a verdict.

• Decision trees elucidate the decision-making process,
leaving no room for questionable conclusions.

• “Decision Tree” follows the “Decision” scheme seen in
the already-established “Decision Engine” service.

5.2 Frontend
Next, designing the application interface also was a major task. We decided on a look-and-feel
that best suited the requirements. Of course, as time elapsed and requirements shifted, our
application layouts followed suit. For example, the global state page particularly experienced a
huge evolution from design ideation to final arrangement (Figures 3, 4, and 5):

Figure 2: Decision Tree Graphic

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 9

Figure 3: Global Page Prototype 1

Figure 4: Global Page Prototype 2

Figure 5: Global Page Prototype 3

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 10

The final designs for the global page, job parameters page and the all jobs page are included as
Figures 6, 7, and 8, respectively:

Figure 6: Global Page Final Design

Figure 7: Job Parameters Page Final Design

Figure 8: All Jobs Page Final Design

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 11

5.3 Backend
While not the most outward-facing component, the backend of any application powers the
frontend by providing the interface with digestible data for rendering.

The backend configuration for “Decision Tree” is suited for development purposes only. This
includes the overall system architecture, API implementation, and data sources. As the
application transitions from proof-of-concept to production work, the backend must be altered
within all three sections to more efficiently handle incoming data and return it to the application
in an acceptable format.

5.3.1 Server Configuration
There are four main entities in the server configuration as shown in Figure 9: The Decision
Tree Application, the local API, the local data directory, and Fermilab’s Shibboleth Identity
Provider.

Figure 9: Development Server Architecture

The Decision Tree Application is the user-facing element of the four units. As the user
interacts with the interface, the application communicates with the local API to retrieve data
and present it to the user. The system also connects with the Fermilab to authenticate
users prior to their access to the application. It is also by this means by which the API has
the ability to query jobs according to a user’s Fermilab ID.

5.3.2 API Configuration
The API is one of the most important components of the software architecture. It transmits
and transforms the data from the local server directory to the application backend.
Currently, the API serves as a hub for access to local Decision Engine channel data and
HTCondor job data and metadata.

In total, there are six endpoints built into this service detailed in Table 2:

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 12

Table 2 – API Endpoints

Endpoint Request Type Purpose

/get-resource/:channelName GET Gets the data associated with a channel

/get-resource/job-data POST Gets a specific job

/get-resource/channel-list GET Gets the list of channels in the Decision Engine

/jobs POST Gets a paginated list of jobs associated with a
user

/update-job POST Adds, removes, or modifies a classad

/update-channel POST Modifies a channel property

Table 2 – API Endpoints (continued)

Endpoint Parameters Example

/get-resource/:channelName :channelName – (string) name of
channel to query

N/A

/get-resource/job-data Id – (string) jobsubjobid {
 “id”: “0000@jobs.fnal.gov”
}

/get-resource/channel-list None N/A

/jobs start – (int) pagination starting
point
count – (int) number of jobs to
return
filters – (array) array of user-
defined filters

{
 start: 0,
 count: 20,
 filters: [{“hello”: “world”}]
}

/update-job action – “add”, “modify”, or
“remove”
key – classad key
value – classad value
id – jobsubjobid

{
 “action”: “add”,
 “key”: “hello”,
 “value”: “world”,
 “id”: “0000@jobs.fnal.gov”
}

/update-channel file – (string) name of channel
action – (string) “modify”
table – (string) name of channel
row_index – (int) index of
modified row
obj – (dict) key-value
representation of changed row
item

{
 “file”: “gce-transforms”
 “action”: “modify”
 “table”: “AWS_Burn_Rate”
 “row_index”: 0
 “obj”: { “BurnRate”: 0 }
}

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 13

The API also communicates with the application’s own web server in order to retrieve
authentication information stored by Shibboleth identity provider. Authentication information
is available by making a GET request to the following example URL: http://sample-web-
application.com/Shibboleth.sso/Session.

5.3.3 Application Data
All of the data rendered on the webpages is static. Information was pulled directly from the
Decision Engine and HTCondor to emulate a working piece of software. After harvesting
the data, it was then converted to JSON format for easy importing and parsing.

When retrieving channel data from the Decision Engine, this information often produces
several text files as depicted in Figures 10 and 11. This portion of data collectively belongs
to the Google Cloud Engine channel.

Figure 10: Price Performance Text File

Figure 11: Figure of Merit Text File

The channel files were then cleaned and converted into a much more workable format. In
the case of the two files above, the expected JSON for this channel is:

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 14

Figure 12: JSON-Formatted Channel Data

HTCondor, on the other hand, presents job data and job metadata in key-value and
comma-separated value formats, respectively. HTCondor job data is represented in Figure
13 while the job metadata is in Figure 14.

Figure 13: HTCondor Job Data Text File

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 15

Figure 14: HTCondor Job Metadata Text File

When cleaned and converted into JSON, the application backend receives job data in a
format as shown in Figure 15 and job metadata in a format shown in Figure 16.

Figure 15: JSON-Formatted Job Data

Figure 16: JSON-Formatted Job Metadata

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 16

Regardless of the data’s nature, it is important that the JSON returned to the application is
in accordance with expected guidelines; otherwise, the frontend will not interpret the object
correctly and will fail to display any information.

6. Technologies

To accomplish our goal of building a web application, we used a variety of technologies as listed
and described in Table 3.

Table 3 – Development Technologies

Name Purpose

Angular + TypeScript Web Framework

HTML + CSS + JavaScript Application Structure, Styles, and Behavior

Python API Configuration

Apache Web Server

Figma Prototyping Tool

Git Version Control

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 17

7. Development Challenges

Aside from the abrupt adjustment to remote work, the most challenging area in this project was
gathering data.

The information required to make this application functional is not currently exposed by services
at Fermilab via an API. The Decision Engine, in particular, does not have a method of retrieving
decision data; therefore, the current iteration of this system does not include decision data for
any of the jobs. Furthermore, although HTCondor can pull job data and metadata from its
system, it also is not immediately available to external systems.

Additionally, finding a reasonable JSON schema for the Decision Engine’s text representation of
internal data proved difficult. The JSON format that the application currently uses is my
interpretation of what the data might and should look like. This discretionary power may pose
challenges when trying to integrate what is actually embedded in the Decision Engine versus
what the application currently needs to function correctly. Any major discrepancies may require
an overhaul of the frontend templating implementation.

8. Future Direction

Ideally, in the future, we would like to obtain Decision Engine and job data from their respective
Fermilab services. This means that the application would become dynamic and also include the
missing Decision Data we could not obtain to fulfil requirement 7 identified in Section 4.2. Figure
17 depicts an updated version of Figure 9 in Section 5.3.1 where data is now pulled from
HTCondor and the HEPCloud Decision engine as opposed to a local server directory.

Figure 17: Future Server Architecture

Additionally, we hope to construct a system of privileges depending on the type of
authentication attributed to a logged in user. In this scenario, certain users will be able to modify
the global state of the Decision Engine and/or configure jobs that belong to other accounts. By
building this new system we hope to further maintain system integrity by giving power to those
who may require more oversight. Finally, expanding access to this application beyond DUNE is

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 18

a definite roadmap item, especially considering that the black-box challenges that end-users
face is universal and not experiment-specific.

Developing a User Interface for DUNE HEPCloud Elisabeth Petit - Bois, Georgia Institute of Technology – GEM Fellow

Fermi National Accelerator Laboratory 19

9. References

[1] Deep Underground Neutrino Experiment (DUNE) Homepage: https://www.dunescience.org/

[2] K. Herner et al., J. Phys.: Conf. Ser. 898, 052026 (2017).

[3] D. Box, J. Phys.: Conf. Ser. 513, 032010 (2014).

[4] B. Holzman et al., Comp. Softw. for Big Sci. 1, 1 (2017).

[5] Worldwide Large Hadron Collider Computing Grid Homepage: https://wlcg.web.cern.ch/

[6] HEPCloud Homepage: https://hepcloud.fnal.gov/

[7] P. Mhashilkar et al., EPJ Web of Conf. 214, 03060 (2019).

[8] Fermilab HEPCloud Facility Decision Engine Design: https://lss.fnal.gov/archive/test-

tm/2000/fermilab-tm-2654-cd.pdf

[9] HEPCloud Decision Engine GitHub Page: https://github.com/HEPCloud/decisionengine

